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Abstract

Truncated Gaussian fields provide a flexible model for defining binary media with
dispersed (as opposed to layered) inclusions. General properties of excursion sets
on these truncated fields are coupled with a distance-based upscaling algorithm and
approximations of point process theory to develop an estimation approach for effec-
tive conductivity in two-dimensions. Estimation of effective conductivity is derived
directly from knowledge of the kernel size used to create the multiGaussian field,
defined as the full-width at half maximum (FWHM), the truncation threshold and con-
ductance values of the two modes. Therefore, instantiation of the multiGaussian field
is not necessary for estimation of the effective conductance. The critical component
of the effective medium approximation developed here is the mean distance between
high conductivity inclusions. This mean distance is characterized as a function of the
FWHM, the truncation threshold and the ratio of the two modal conductivities. Sensi-
tivity of the resulting effective conductivity to this mean distance is examined for two
levels of contrast in the two modal conductances and different FWHM sizes. Results
demonstrate that the FWHM is a robust measure of mean travel distance in the back-
ground medium. The resulting effective conductivities are accurate when compared
to numerical results and results obtained from effective media theory, distance-based
upscaling and numerical simulation.
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Truncated MultiGaussian Fields and
Effective Conductance of Binary
Media

1 Introduction

Determination of a single effective property value from an assemblage of materials is a long
standing research problem in a number of scientific and engineering fields. Here we focus
on development of an effective conductivity value from a mixture of two materials (binary
media) with distinct conductances. A simple conceptualization of the binary medium as in-
clusions of a high/low conductivity material within a continuous matrix of material having
the opposite conductivity serves for discussion here.

Effective properties of materials composed of mixtures of two component materials have
been the subject of study for heat conduction, electrical conductivity, magnetic perme-
ability, and electrical permittivity [1, 2, 3, 4, 5, 6, 7, 8, 9]. Hashin and Shtrikman [8]
demonstrate the mathematically analogous nature of calculations for effective values of the
conductance terms in these varied fields. An extensive amount of work for binary media
has focused on defining the theoretical bounding values for the effective properties of the
medium [10, 11, 4, 8].

The same approaches to effective media equations hold for calculation of effective perme-
ability, or hydraulic conductivity, in steady-state flow through porous media. Binary models
of conductivity are widely applied in subsurface flow through porous media particularly for
representation of permeability patterns in fluvial deposits (e.g., [12, 6, 13, 14, 15]). Addi-
tionally, fractured media are often characterized using a binary permeability model where
the fractures represent strongly anisotropic, high conductivity inclusions embedded within
a matrix of low conductance. Fractured media can be represented as linear or planar con-
ductive elements within a less conductive background using discrete fracture representa-
tions [16, 17] or as representation of fractured zones within continuum models [18, 19, 20].

Previous work on binary fields in the context of flow through porous media has empha-
sized development of expressions for the effective conductance of the field as a function
of the proportion of the high/low, conductivity phase. Effective medium theories (EMT)
for binary assemblages have focused on using the conductivities and proportion of the two
materials to determine an effective conductivity value [9, 21, 5, 22]. Initial development of
these theories used spherical inclusions and more recent work has incorporated additional
information on the shapes of the inclusions [23, 24, 25, 1, 2, 26].

Thorough reviews of variations of the EMT-based approaches with comparison to other
methods can be found in: [10] and [27]. EMT-based approaches assume non-interaction
between inclusions and therefore do not utilize information on the connectivity or interac-
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tion of either phase with other inclusions of the same phase. In testing against numerical
results, EMT-based approaches work best when the inclusion fraction is less than 50 per-
cent (see [6, 10]).

The effective conductivity formula developed by [27] incorporates information on con-
nectivity of high conductivity inclusions through the average path length within the low
conductivity material. This novel approach motivates exploration of various measures of
connectivity and different techniques for estimating the mean length between inclusions. A
model for these mean distances tied to the geometry of binary media resulting from trun-
cation of multiGaussian (mG) fields is proposed herein and the behavior of this model is
compared to previously developed expressions for effective media and numerical results.

A number of numerical techniques are available for simulation of binary random fields. In-
dicator geostatistical techniques [28] based on definition of the spatial variation through
a variogram provide an efficient means of generating stochastic realizations of binary
fields [29, 30, 31]. Alternatively, indicator simulation approaches can be based on transi-
tion probabilities between indicator classes [32, 33]. Typical applications of geostatistical
simulation techniques are focused on generation of fields with more than two classes, mul-
tiple indicator simulation, but they can also be used for the generation of binary fields. Less
common approaches for generating spatial binary fields include object-based and Boolean
models [34], generation of periodic media [35, 7] and pluriGaussian and truncated mG
fields [34, 36].

Development of excursion set theory applied to truncated mG fields over the past 15 years
has been driven by developments in medical imaging and astrophysics [37, 38, 39]. In par-
ticular, calculation of the expected values of the total area, number of distinct excursions
and the average excursion size over a threshold value can be calculated from definition of
the mG field and knowledge of the threshold value ([40, 41]). Excursion set theory is appli-
cable to truncation with a single threshold or multiple thresholds that produce multiphase
fields (e.g.,[42]). Phillips and Wilson [43] proposed mean threshold crossing distances to
estimate correlation lengths of permeability. However, in contrast to the wide application
of mG random fields in hydrogeology, use of excursion sets from truncated fields for char-
acterization and modeling of heterogeneous media in groundwater studies has been limited.

We parametrize a form of distance-based uspcaling using point-process theory and prop-
erties of truncated Gaussian fields to develop an expression for the effective conductance
of binary media. This new expression, truncated Gaussian distance-based upscaling (TG-
DBU) differs from the existing distance-based upscaling in that it does not require instan-
tiation of the binary field. This is helpful if the model is to be fitted to data to estimate
model parameters. Section 2 summarizes distance-based upscaling and the salient aspects
of point-process theory and truncated mG fields. Section 3 combines these three elements
into an expression for effective conductance for isotropic inclusions within a background
matrix. In Section 4, this new expression is compared to distance-based upscaling using
full knowledge of the binary field as well as an existing analytical solution and numerical
solutions. Section 5 compares various distance measures and examines the behavior of the
average distance between inclusions in the neighborhood of the percolation threshold.



2 Estimation of Effective Conductivity

Development of the TG-DBU procedure is motivated by the goal of estimating the effective
conductance of a binary medium created from thresholding a Gaussian random field with-
out instantiation of that field. The two modal permeabilities, K1 and K2, are considered
known. Given the threshold at which the field is truncated, and size of the Gaussian kernel
used to create the field as defined by the full-width at half-maximum (FWHM) parameter,
the effective permeability is estimated.

2.1 Distance-Based Upscaling

The distance-based upscaling (DBU) approach developed by [27] utilizes an estimate of
the mean flowpath length between inclusions within the background (matrix) material as a
measure of phase connectivity. Through application of a phase-change theorem, the DBU
approach applies to high or low conductivity inclusions within a matrix of the opposing
material. The DBU approach [27] serves as the foundation for our estimation approach and
is briefly outlined here.

The basis of DBU is conceptualization of each inclusion as a rectangular object of dimen-
sions (By,By) centered within a larger rectangular block, having the same orientation, of
dimensions (Ly,Ly). Fixed pressure boundary conditions on each end of the block and no-
flow boundary conditions on the opposite sides create steady, one-dimensional flow along
the x-direction. Knudby et al [27] identified an approximate linear relationship between
the inverse of the effective conductivity of the block (Kz)~! and the relative shape of the
inclusion (B,/Ly)(By/Ly) and used this relationship along with harmonic and arithmetic
conductivity bounds to develop an expression for (Kp) ™'

1 1 1 R— 1
_:<___> P (1)
Ka Ky o- = D1 Ky

where K4 and Ky are the arithmetic and harmonic mean conductivities, respectively, p; is
the proportion of high permeability material and:
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The expression for (Kz)~! can also be cast as a weighted mean of K and K.
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where p is the relative inclusion shape, R, normalized by p;:

R—
p=1—"Lclo,1] )

p Pl

The distance-based component of the DBU method enters as a normalized average distance,
Dyorm, of the flow in the background medium within the block:

B.—L
Dyorm = xLx E )
The normalized inclusion shape, p, can be restated using Dy,
p _ 2Dn0rm_2D}%orm (6)
1 —py

Expansion of these relationships from a single inclusion within a single block to a field of
inclusions requires calculation of average values across the field for the inclusion dimen-
sions, By, By and block dimensions, Ly, L,. A key element of this development is determi-
nation of the average distances between inclusions along the direction of flow; D = L — B.
The block domain is conceptualized as a virtual permeameter centered on each inclusion
within the field. R then represents the average relative inclusion shape and D, is the
normalized average distance between inclusions along the direction of flow weighted by
the area of each connecting inclusion.

In the DBU approach, the average distance, D, is calculated as a weighted average using
distances, D, and inclusion areas A as measured directly on the binary field:

Yj—1 Lio DijAiA;

D= (7
7:1 Lin A
with the average block dimension in the direction of flow, x, calculated as:
- Y ByiA;
B=="LC2 8
i1 Ai ®)

The normalized distance between inclusions is: Dy = B/Z. Use of these spatial aver-
ages renders the block conductivity estimate, Kp, as an effective conductivity, K,y for the
domain.
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A strong advantage of the DBU is the incorporation of the phase interchange theorem [3].
This theorem provides a relationship between K, of a field with low conductivity inclu-
sions in a high conductivity matrix (low-in-high, LinH) and the generally easier-to-estimate
K,y of a complementary field of high conductivity inclusions in a low conductivity matrix
(high-in-low, HinL). The fixed head and no-flow boundaries are rotated 90 degrees and
applied to the complementary field. The fluxes, Q, through the two fields are related by:

OLint Qnint. = K1 K2 (AH)? &)

where AH is the pressure drop across both fields from the prescribed boundary conditions.
The product of the effective conductivities for each field is equal to the product of the two
conductivities in the binary field:

Kerrin)KerrLing) = Ki1K2 (10)

A key advantage of the phase interchange theorem is that it enables the calculation of the
LinH case for any geometry for which the HinL solution is available.

Knudby et al [27] demonstrate accurate estimation of K, ¢y for a range of simulated fields
created with Poisson placement of ellipses or rectangles as well as those created with tran-
sition probability-based geostatistical simulation. Within these fields, the ratios of the two
conductivities range from 100 to 10,000. The DBU results are also compared with several
other effective value approaches.

2.2 Excursion Sets and Kernel Size

Calculation of K, sy with the DBU method requires both creation of the binary field and cal-
culation of all inclusion sizes and distances between proximal inclusions. Image processing
algorithms are available for these calculations; however, the computational expense of these
algorithms is non-trivial. Here, we develop an approach for estimation of K,y based on
DBU that estimates the average inter-inclusion distance without explicit creation or pro-
cessing of the binary field. This new approach relies on properties of truncated Gaussian
fields to estimate the inclusion sizes and the mean distance between them and is designed
to be computationally efficient.

The model for spatially correlated multiGaussian (mG) fields is based on a Gaussian kernel:

1 |
G(x,y) = Wexp (—EdZ ldT> (11)

where d is the distance vector containing d, and dy that are distances from any location
(x,y) back to the origin of the Gaussian function xp, yo (here (0,0) for the standard normal
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distribution). In this work, the covariance matrix, ¥ = 621, (where I is the identity matrix) is
diagonal for the specific case of the kernel being aligned with the grid axes. Convolution of
an uncorrelated mG field with a Gaussian kernel creates a realization of a correlated random
field. A discretized uncorrelated mG field (e.g., as described on a mesh) can be created by
simply sampling the field values at the mesh points i.i.d. from a standard normal.

The spatial correlation of the mG field is defined by the FWHM of the Gaussian kernel
used to create the Gaussian field. The FWHM parameter is commonly used as a spatial
measure in image processing:

FWHM = 6+/81n(2) (12)

where o is the standard deviation of the Gaussian kernel. Truncation of a Gaussian field at
a threshold u defines the u — level excursion set:

X, = {xERd:Y(x) Zu} (13)

and the variogram, of the random set X,, can be calculated:

1 rarcsin(y/y(h)/2) u? )
Yu(h) = E/ exp (—?(1 + tan (t))) dt (14)
0

at lag spacings h. Variogram models that are linear at the origin (e.g., exponential, hyper-
bolic) cause the perimeter of X, to be infinite (see [34], Section 16.1) and we restrict our
work here to Gaussian kernel functions.

Three related properties of the truncated Gaussian field (following [40]) are:

N, the number of pixels above the truncation threshold, u,
m, the number of distinct regions (inclusions) above the threshold, and
n, the number of pixels in each region,

with expectation relationship E[N| = E[m]E|[n]. For threshold value, u, the number of cells
above that threshold, N, is provided by the Gaussian cdf and the size of the domain, S:

E[N]=S / om) V22, (15)

The Euler Characteristic, EC, in D = 2 represents the number of connected objects in the
domain minus the total number of holes within those objects. Therefore EC goes to 0.0
at u = 0 and EC becomes negative when u < 0.0 as the truncated field represents a single
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domain-spanning object containing a large number of holes. In 2D, the absolute value of
EC is the number of distinct inclusions of either phase within the opposite phase and is
used here to determine E [m].

E[m] = |[EC| = |(2r)~(P+D/2yy—DyD—10/2| (16)

where W is an alternative measure of the spatial correlation of the mG field defined as a
fraction of the FWHM:

W =FWHM/+\/4In(2) 17
For a given threshold, u, the average object area is found from the expectation relationship:
Eln] = E[N]/E[m] = E[N]/|EC]| (18)

Figure 1 compares a direct calculation of EC using the Matlab Image Processing tool-
box [44] with estimates made using Equation 16 across a range of u values increasing from
left to right. The corresponding binary fields are also shown for several representative
threshold values.

50
'UL ——— EC Expectation |
o - O Cdculaled EC /]
"(7‘) 30 -
‘T ol 4
2 o
5 ok i
© g S / Soeoo
E 1oL Qo 5 o 4
O Qo o i
o o °s o i
S « “Lowin high” oo |
L 50 I I ~ I L I I

-4 -3 2 -1 0 1 2 3 4

Truncation Threshold, u (standard deviations)

Decreasing proportion of high permeability material

Figure 1. Calculated and estimated Euler characteristic for a truncated mG field as a function of u.
The corresponding binary fields are shown for select thresholds. Regions of high conductivity are
colored black.

13



This page intentionally left blank

14



3 Reduced Model Estimation

The properties of the truncated Gaussian field are used with the DBU method to develop
an approximation for K,y of a binary field. These estimations are done as a function of
the proportion [0, 1] of the high permeability phase (p;) as defined by the threshold, u. A
critical component of the DBU approach is D,,,,,. We employ a combination of spatial
point process theory and use of FWHM as a characteristic distance of the truncated field
to estimate Dy, and refer to this approach as TG-DBU. The development here is for
isotropic fields.

At u values near —oo or oo, the distances between centroids of inclusions are approximated
as the distribution of nearest neighbor distances, d, from a Poisson point process (e.g., [45])
with an intensity A = |EC|/S:

F(d) = 1.0 —exp(—nAd?) : d > 0. (19)

The estimated average distance between inclusion centroids, D is:

D = S 1 (20)
|EC|

This approximation only holds at the extreme values of u (see [40]) as the distances be-
tween inclusion centroids overestimate the distance between inclusion edges as the average
inclusion size, approximated as E[n], increases. The value of D" is adjusted to account
for the inclusions having non-zero area by subtracting twice the average object radius
D' =D"—2./E[n]/=.

The DBU calculates distances between objects in the downstream direction only. The near-
est neighbor distance calculation is adjusted to account for this preferential search direction
through incorporation of a half angle, 6, that constrains the search for objects in the +/- 90
degree directions at # = 0.0 and with 6 decreasing as u moves to the extreme values:

0 =—2mn(p; —0.5)%+m/2 1)

This expression defines an exponential distribution for the variable 6x> (after [45], page
34).

The geometry and connectivity of the binary patterns in truncated Gaussian fields vary
considerably as u increases from —oo to +oo (Figure 1). Near the extreme values of u,
the field is composed of independent high/low conductivity inclusions in a matrix of the
opposite material. As u moves towards 0.0, the inclusions begin to coalesce forming larger
inclusions with shapes that are roughly approximated by overlapping circles. At u values
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even closer to 0.0, the inclusions begin to span the domain and at u = 0.0, there is no
distinction between what is background and what is inclusion.

Conceptually, for the case of isotropic Gaussian fields the calculated value of D will never
go to zero. As u moves towards 0.0 from either extreme, the D calculation changes from
that of distances between isolated independent inclusions to distances between a few iso-
lated inclusions and a main inclusion composed of several inclusions that were isolated at
lower u values and finally to distances from one portion of a domain spanning inclusion
across holes to another portion of that same inclusion.

Atu=0.0 (p; = 0.50) the average flow distance within the low permeability background
should be equal to the FWHM distance. This assertion is due to the FWHM being the
expected size of both the inclusions and the background matrix at this threshold.

This conceptualization provides the final piece of the effective conductivity approximation.
For a given value of u, or the corresponding value of pq, D is estimated as the larger of the
average distance between inclusion edges and the FWHM:

[ § 1

and used with Equation 1 to calculate Kp. This formulation is referred to as the basic model
in the remainder of this paper. Figure 2 compares the results of the basic model against
effective conductances calculated numerically using MODFLOW-2005, [46]. Harmonic
averaging is used to calculate internodal conductances within MODFLOW. An ensemble
of 30 mG fields are created on a 500 x 500 grid (with cells of unit size) with a convolution
kernel of FWHM of 37.7 length-units. These mG fields are transformed to binary fields
through truncation at thresholds corresponding to uniformly spaced changes in the propor-
tion of the high conductivity phase from p; = 0.04 to 0.96. Additionally, thresholds of
u =-2.5 and 2.5 are used to create the minimum and maximum p; values for each field:
0.0062 and 0.9938. This process results in truncation of each field at 26 unique thresholds.
For each of the 26 u threshold values, the average numerical result across 30 fields (780
evaluations) is shown. We define the ratio: K1/K2 using the logl0 conductivity values:
K = log,o(K1) —log,y(K2) and show results for k¥ = 2 and 4 in Figure 2.

%
D = max

The basic model utilizes an exceedingly simple parameterization of the mean distance be-
tween inclusions and produces relatively accurate estimates of the effective conductance.
The basic model estimates are less than a factor of 2 (100 percent error) away from the
numerical results for the case of K = 2 for all values of p; with the most accurate results for
p1 < 0.50. The basic model tends to overestimate the numerical results at p; values greater
than 0.50. For the case of Kk = 4, the basic model strongly overestimates the numerical
results at p; > 0.50.

Several extensions to the basic model distance calculations are incorporated for the final
TG-DBU model. At low values of pp, the basic model underestimates the numerical results
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Figure 2. Comparison of effective conductivity values estimated with the basic model and the
TG-DBU approaches to numerical results. The percent error of the effective conductivity solutions
relative to the numerical results are shown in the right hand images. Results for two and four
orders of magnitude difference in the modal conductivities are shown in the top and bottom rows,
respectively. Results are for Gaussian fields created with an FWHM of 37.7 (¢ = 16.0) length-units.
The gray dots indicate the limiting values of the arithmetic and harmonic averages
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and smaller distance values are needed to minimize this error. Additionally, the degree
of underestimation increases with increasing x (Figure 2). At levels of p; above 0.50,
the basic model overestimates the numerical results and, due to application of the phase
change theorem at these higher proportions, the distances must also be decreased in this
region. The correction here must also be a function of k.

The extended distance calculation is:

max [1/|E—SC‘%—2 E(n)/n,%} for p; < 0.50
D" = (23)

max [, /|E—SC‘% —2/E(n)/m,FWHM x (1.0 — pl)K_l] otherwise.

The extended distance calculations significantly improve the ability of the TG-DBU model
to estimate the effective conductivity (Figure 2). For the case of K = 2 the maximum error
is reduced to less than 40 percent and for the ¥k = 4 case, the maximum error is less than
100 percent with the largest improvement occurring at p; values greater than 0.50.
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4 Comparison to Analytical and Numerical Results

The TG-DBU estimated effective conductivity values are compared to existing models for
values of p; in [0,1.0) and for k values of 2 and 4. The harmonic and arithmetic means pro-
vide the upper and lower bounds on possible values. Visual comparisons and calculations
of the percent relative error between the estimated values and numerical results are exam-
ined for two inclusion sizes. Comparisons are made to a self-consistent effective medium
approximation developed by Pozdniakov and Tsang [25] that also employs the phase inter-
change theorem. Additionally, a series of binary fields are created from truncation of mG
fields and used as input to the DBU approach of [27] as well as numerical calculation of
effective conductivity.

Pozdniakov and Tsang [25] developed a self-consistent approach to the estimation of effec-
tive conductivity of binary media in 2D and 3D domains. The solution of [25] accounts for
interaction between inclusions and uses the phase-interchange theorem to provide effective
conductivity estimates across all proportions of high/low conductivity material. Equation
14 of [25] provides an analytic solution for the effective conductivity in a 2D domain with
circular (isotropic) inclusions.

Kepr = (K1 —K2)(p1—1/2) + 1/2\/(1 —2p1)*(K1 — K2)? + 4K K> (24)

The DBU approach of [27] as outlined in Section 2 is applied to each binary field. The
same fields are also used as input to numerical calculations done with MODFLOW-2005
([46]). For each inclusion size, DBU and numerical results are calculated on 30 fields at
each of 26 thresholds.

Results comparing the model developed here to results of the self-consistent approach [25],
the DBU approach [27] and numerical results are shown in Figure 3. These results were cre-
ated from fields with a FWHM of 37.7 length-units. The TG-DBU and the self-consistent
results (“PT 2004”) are calculated independently of the actual binary field and require the
phase proportions, the two modal conductances and the inclusion shape as inputs. The
TG-DBU also utilizes the FWHM as an input. The DBU and numerical results are depen-
dent on the actual binary fields, and for these results, each value in Figure 3 represents the
average conductance calculated over 30 realizations. The deviations of the DBU estimates
from the numerical estimates at proportions just above 0.50 appear to be an artifact of the
distance calculations done here on the truncated mG fields and not a function of the DBU
technique [27].

The right-hand side of Figure 3 shows the percent error of the three estimators relative to
the numerical results. The axes are limited to 4+/- 100 percent, or a factor of +/- 2, for cal-
culations where the modal conductivities vary by factors of 100 (top) and 10,000 (bottom).
Relative to the self-consistent approach, the two distance-based upscaling techniques better
capture the effective conductivity at proportions of the high conductance phase p; > 0.50.
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Figure 3. Comparison of estimated effective conductivity results, to the self-consistent solution,
the DBU solution, the numerical results and the harmonic and arithmetic average bounds. The per-
cent error of the effective conductivity solutions relative to the numerical results are shown in the
right hand images. Results for two and four orders of magnitude difference in the modal conduc-
tivities are shown in the top and bottom rows, respectively. Results are for Gaussian fields created
with an FWHM of 37.7 (¢ = 16.0) length-units.
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For all three approaches, errors are highest at or near p; = 0.50. This proportion corre-
sponds to the bond percolation threshold for a square lattice in 2D [9] and represents the
change point where the high conductivity phase becomes fully connected across the do-
main. Percolation theory and the percolation threshold have been developed for systems
with no spatial correlation and are applied here where the ratio of FWHM to domain size
is small (i.e., < 0.10). For these calculations, the size of the FWHM relative to the domain
size is 0.075.

The approaches examined in this study define an effective conductivity for the domain.
Effective properties are meaningful in cases where the domain size is much larger than the
correlation length of the random field contained within the domain. This condition is also
the definition of an ergodic field and a rule of thumb is that an effective property can be
assigned to a domain when the correlation length is < 0.10 of the domain size. In cases
where the domain is discretized into smaller cells, or blocks, and the correlation length
exceeds this limit relative to the cell size, a block property is assigned. Additional details
on effective versus block properties are provided in [10].

As the FWHM increases, development of phase connection across the domain will occur
at lower proportions of that phase. Figure 4 shows the results of calculations for a FWHM
of 73.4 length-units, or 0.15 of the domain size.

The increase in the relative size of the inclusions decreases the proportion of high-conductivity
material necessary to make a connected phase across the domain and the effective medium
techniques tend to underestimate the numerical conductivity beginning at approximately p;
=0.30. This underestimation is particularly apparent in the K = 4 results. All techniques ex-
amined are able to create reasonable estimates of the block conductivity at p; values > 0.6.
These results provide motivation for future work to improve block conductivity estimates
by incorporating percolation threshold behavior into the TG-DBU formulation.
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Figure 4. Comparison of estimated effective conductivity results, to the self-consistent solution,
the DBU solution, the numerical results and the harmonic and arithmetic average bounds. The per-
cent error of the effective conductivity solutions relative to the numerical results are shown in the
right hand images. Results for two and four orders of magnitude difference in the modal conduc-
tivities are shown in the top and bottom rows, respectively. Results are for Gaussian fields created
with an FWHM of 73.4 (¢ = 32.0) length-units.
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5 Results and Discussion

The value of D is a key feature of the the DBU and TG-DBU approaches and final effective
conductances are sensitive to these values. Distance calculations are explored further in
Figure 5 and compared to average distances across the background material as calculated
along streamlines.

The basic model and the DBU model derive average distances from purely geometrical
considerations and these values do not change as a function of x (Figure 5). The average
distances along streamlines are also quite stable across the change in k while the TG-DBU
approach explicitly incorporates the k value into the average distance calculation. With the
exception of the TG-DBU model, the FWHM serves as an excellent approximation of a
lower limit on the distance values calculated by the different approaches.

The average distances from the streamline values are the largest of all calculated values.
Examination of streamlines in truncated binary fields shows that streamline distances across
the background material occurs where flow is nearly normal to the direction of the aver-
age gradient (Figure 6). This observation is counter to the development of the DBU and
TG-DBU that limit the search across background material to other inclusions located in
the downgradient direction. However, at p; values near 0.50 the FWHM is an excellent
approximation of D both along the direction of the gradient and orthogonal to it. This
observation of high local gradients creating flows in directions nearly normal to the aver-
age gradient is consistent with field observations and numerical model results for hydraulic
gradient monitoring networks [47, 48].

The average distances calculated by the DBU method are weighted by the sizes of the in-
clusions on either end of the travel distance. In contrast, the TG-DBU employs a single
average inclusion size, E[n], thus weighting all distances equally. Figure 5 indicates that
longer distances are generally connected to larger inclusions of high permeability material
and are more highly weighted in the DBU approach. The distribution of distances calcu-
lated along streamlines are similarly skewed towards larger values.

The basic model and the DBU approach are developed as a function of p; and the average
distances between objects. However, effective conductivity is not solely a function of the
geometric arrangement of the inclusions. The k value influences the average distance taken
by flowpaths across the lower conductance material and simulations show that changes in
K have the largest impact on flow paths at p; values near 0.50. As an example, Figure 6
shows significant changes in the flow path locations for the same binary field at k values of
2.0 and 4.0.

The average streamline distances are nearly unchanged from k¥ = 2 to ¥ = 4, yet Figure 6
shows significant changes in the locations of the streamlines on the same field for the two
different x values. The calculations of average distances for Figure 5 do not include a
calculation at exactly p; = 0.50 (0.48 and 0.52 are the closest). The simulation results
in Figure 6 are at exactly p; = 0.50 and show some difference with average streamline
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Figure 5. Comparison of average distance estimates for different calculation approaches. The
DBU and Streamline results are average values calculated over 30 realizations. Results are for
Gaussian fields created with x values of 2 (A) and 4 (B) and an FWHM of 37.7 (¢ = 16.0) length-

units.

distances of 25.4 and 34.9 for the x values of 2 and 4, respectively.

The impact of the x value and the initiation of a percolating cluster may preclude ap-
plication of distance-based uspcaling techniques for estimation of block-scale properties.
Figure 7 shows both D calculated along streamlines and normalized by the FWHM and
the effective conductance calculated numerically and normalized by the geometric mean
conductance for four different truncated Gaussian fields. The region around p; = 0.50 is
highlighted with flow and streamline solutions at p; increments of 0.008.

For each simulation with k¥ = 4, there is a significant increase in the effective conductance
at the percolation threshold. This increase is not evident in the K = 2 results. The average
streamline distances between high permeability inclusions are not a strong function of p;
and show gently decreasing values from p; = 0.40 to 0.60. These values are well approx-
imated at p; values near 0.50 by the FWHM (ratio of 1.0) for both k values. The vertical
lines in Figure 7 indicate the location of the percolation threshold and vary from p; <=
0.43 to near 0.57 in these four example fields.
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Figure 6. Comparison of flowpath locations for the same binary field with x values of 2 (A) and
4 (B). Results are for Gaussian fields created with an FWHM of 37.7 (6 = 16.0) length-units and a

threshold of u = 0.00 (p1 = 0.50). In both images, flow is from left to right.
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Figure 7. Effective conductances and average streamline lengths for p; values near 0.50. Results
for four different fields are shown. The vertical black line denotes the percolation threshold. Effec-
tive conductances are normalized by the geometric mean conductance. Average streamline lengths

are normalized by the FWHM.
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6 Conclusions

This paper presents truncated mG fields as a flexible means of creating simulated binary
media and then extends distance-based upscaling to directly utilize properties of the trun-
cated mG fields to calculate effective conductivity values. Developments in medical image
processing based on excursion set theory provide techniques for estimation of the number
of inclusions, and average inclusion size from knowledge of the threshold and the kernel
size (FWHM). These results are coupled with point process theory and distance-based up-
scaling (DBU) to develop a robust estimator of the effective conductivity of binary media.
This new approach is called Truncated Gaussian-Distance Based Upscaling (TG-DBU).
TG-DBU is based on expectation relationships and does not require instantiation of the
binary field for estimation of the effective conductance.

TG-DBU is unique among upscaling approaches considered in that the kernel/inclusion
size parameterized as the FWHM is a direct input to the upscaling function. We introduce
the FWHM as a characteristic length for this upscaling and demonstrate its applicability
for estimation of distances between inclusions across a broad range of p;. Extensions to
the geometrically-derived basic model that account for deviations in the estimated effective
conductivities near the percolation threshold and account for the impact of ¥ on flow path
distances between inclusions result in the TG-DBU model. Comparison of TG-DBU with
numerical, DBU and self-consistent approaches demonstrates the accuracy of TG-DBU
and shows results that are at least as accurate as the other techniques for all values of pl
for the fields examined.

Understanding the role of the average distance between inclusions and the sensitivity of
this measure to other parameters is critical for further development of any distance-based
upscaling techniques including TG-DBU. The impact of p1, k and the percolation thresh-
old on numerical calculations of effective conductivity and distances between inclusions
along streamlines were examined. Results show that local gradients normal to the direction
of the average gradient cause streamlines to traverse the background material in a direction
orthogonal to the average flow direction. For isotropic media examined here, the FWHM
value provides a robust approximation of the average streamline distance in the background
material at p1 values near 0.50 and these results are not significantly impacted by percola-
tion behavior or the value of k. These results indicate that for anisotropic media where a
maximum and minimum FWHM are used to define the Gaussian kernel, the FWHM nor-
mal to the flow direction will provide the best estimate of the average distance between
inclusions. Effective conductances calculated across the percolation threshold indicate that
the effective conductivity is a strong function of the k¥ value when k¥ = 4, but at K = 2 the
percolation threshold has little effect on the resulting effective conductance when the per-
colation threshold is reached. For the k¥ = 2 results, the geometric mean permeability serves
as a reasonable estimate of K, sy on both sides of the percolation threshold. For the 30 fields
examined, the percolation threshold is reached at p; values ranging from less than 0.40 to
greater than 0.60 indicating that estimation of effective conductance values is possible, but
that detailed knowledge of the field geometry and percolation threshold are necessary for
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estimation of block-scale properties.
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